CPML30MAX™

Inductor with nanocrystalline magnetic core

FEATURES

600V Class

Supports switching frequencies up to 40kHz

Highly linear inductance characteristic

Optimized for liquid cooling

High performance nanocrystalline magnetic core

High efficiency

Low capacitance

High power density

APPLICATIONS

Data Centers

EV chargers

Uninterruptible Power Supplies

Solar inverters

DC-DC converters

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	VALUE			UNIT	CONDITION
		MIN.	TYP.	MAX.		
INDUCTANCE	L	27.0	30.0	33.0	μΗ	T=25°C, f=40kHz
DC RESISTANCE	DCR		4.6	5.3	mΩ	T=25°C
SHUNT CAPACITANCE	C_{shunt}		29		pF	T=25°C
TERMINAL-TO-CASE CAPACITANCE	C _{case}		161		pF	T=25°C, f=1MHz
SELF-RESONANT FREQUENCY	SRF	5.1	6.2		MHz	T=25°C
POWER DISSIPATION	P_{max}			97¹	W	T _{case} = 25°C
DC CONTINUOUS CURRENT	I _{DC,max}			110¹ 93¹	А	$T_{case} = 25$ °C $T_{case} = 60$ °C
MAX INTERNAL TEMPERATURE	T_{max}			150	°C	

¹P_{max} and I_{DC,max} are maximum total power dissipation and maximum DC current respectively when operating at T=T_{max}

INSULATION CHARACTERISTICS

PARAMETER	SYMBOL	VALUE		UNIT	CONDITION
		MIN. TYF	P. MAX.		
ISOLATION VOLTAGE, TERMINAL TO CASE	V_{iso}	2500		V_{RMS}	60Hz, 1mA Max, 60s
CREEPAGE, TERMINAL TO TERMINAL		14.0		mm	
CLEARANCE, TERMINAL TO TERMINAL		14.0		mm	
CREEPAGE, TERMINAL TO CASE		6.0		mm	
CLEARANCE, TERMINAL TO CASE		6.0		mm	Terminal mounting hardware not installed

Creepage and clearance designed in accordance with UL840 and IEC60664

THERMAL SPECIFICATIONS

PARAMETER	SYMBOL	VALUE			UNIT	CONDITION
		MIN.	TYP.	MAX.		
THERMAL RESISTANCE	R_{th}		1.29		C/W	Baseplate to internal hotspot
THERMAL TIME CONSTANT	$ au_{th}$		8		min	

MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	VALUE			UNIT	CONDITION
		MIN.	TYP.	MAX.		
WEIGHT	G		5.3		lbs	

INSTALLATION REQUIREMENTS

PARAMETER	SYMBOL	VALUE			UNIT	CONDITION
		MIN.	TYP.	MAX.		
TERMINAL FORCE X	F_{x}			25	lbf	
TERMINAL FORCE Y	$F_{\mathcal{Y}}$			25	lbf	
TERMINAL FORCE Z	$F_{\!\scriptscriptstyle Z}$			11	lbf	
TERMINAL BOLT MOUNTING TORQUE	M_t	33			in-lbs	10-32 SAE J429 Grade 8
MOUNTING BOLT TORQUE	M _b	9.0	11.0	13.0	ft-lbs	¹ / ₄ "-20 SAE J429 Grade 8 ¹
HEATSINK MOUNTING SURFACE FLATNESS				127	μm	
HEATSINK MOUNTING SURFACE FINISH	R_z			15	μm	

⁽¹⁾ If stainless steel mounting bolts are used, it is recommended to apply an anti-seize product Reduce torque by 50% for lubricated bolts.

PERFORMANCE DATA

Typical values based on initial product testing.

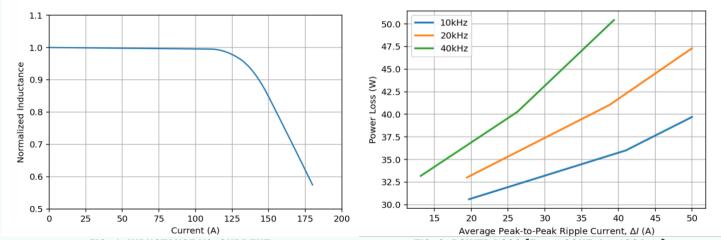


FIG. 1: INDUCTANCE VS. CURRENT

FIG. 2: POWER LOSS ($F_{LINE} = 60HZ$, $I = 180A_{RMS}$)

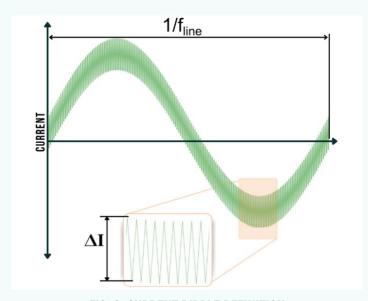
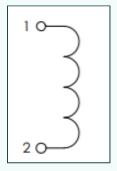
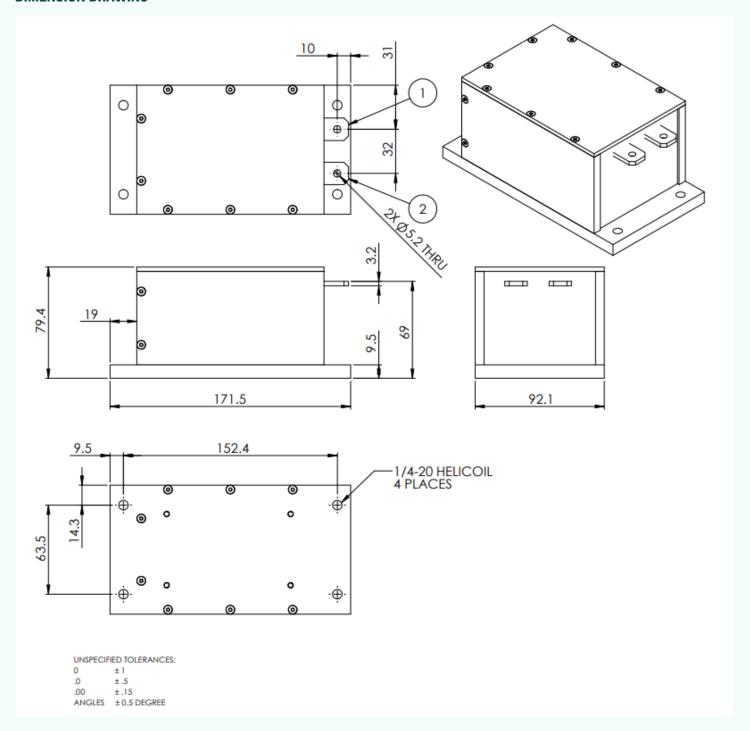




FIG. 3: CURRENT RIPPLE DEFINITION

CIRCUIT DIAGRAM

DIMENSION DRAWING

PARTNER WITH US

Contact us to learn more about our capabilities, or to schedule a tour of our facility in Pittsburgh, PA.

info@CorePowerMagnetics.com (412) 532-8382

Energy Innovation Center, 1435 Bedford Ave, Pittsburgh, PA 15219.

Important Notice

The information contained in this document is intended solely for informational purposes and does not constitute a warranty, guarantee, or assurance of any specific conditions, performance, or characteristics. CorePower Magnetics™ disclaims all warranties, whether express, implied, or statutory, including without limitation warranties of merchantability, fitness for a particular purpose, and noninfringement of third-party intellectual property rights. It is the responsibility of the user to comply with all applicable legal and regulatory requirements, industry standards, and best practices when utilizing this product. This document and the information herein are subject to change without notice. This product is not designed, tested, or approved for use in applications where failure could reasonably result in personal injury, death, or severe property damage. Certain components may contain materials subject to regulatory restrictions or handling precautions; consult applicable environmental regulations and product documentation for safe use and disposal. CorePower Magnetics™ does not grant any license, either implied or explicit, under patents, copyrights, or other proprietary rights. For the avoidance of doubt, this document is not intended to and does not constitute an offer by CorePower Magnetics[™] to sell this product, and, further, it is not intended to and does not constitute a legally binding obligation between CorePower Magnetics™ and any other party. Any sale and purchase of CorePower Magnetics™ products is subject to CorePower Magnetics' General Terms and Conditions of Sale.

Safety and Technical Responsibility

This product is designed exclusively for use by technically trained professionals. Users and their technical teams are responsible for assessing its suitability for their specific applications, ensuring a thorough understanding of the product documentation, and adhering to all relevant guidelines. Improper use may lead to injury, property damage, or voiding of warranty coverage. CorePower MagneticsTM shall not be held liable for any consequences arising from unintended or improper use of this product.

Performance and Typical Values

Any performance metrics or values labeled as "typical" within this document represent average figures within a set of tested conditions and are provided for informational purposes only. They do not constitute a guarantee of product performance in specific conditions or applications.

Hazardous Materials Warning

Due to technical requirements, certain components may contain materials subject to regulatory restrictions or handling precautions. Users are advised to consult applicable environmental regulations and product documentation for safe use and disposal practices.